EVERSE Training
  • Log In
    • Log in with CERN SSO (CH)
    • Login
    • Register
  • Materials
  • Events
  • Trainers
  • About
  • Directory
    • Learning paths
    • Providers

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Content provider
    • EVERSE25
    • Show N_FILTERS more
    • Keyword
    • programming language
    • python18
    • R9
    • git9
    • testing9
    • Python8
    • version control8
    • data7
    • fair7
    • continuous integration6
    • documentation6
    • github6
    • reproducibility6
    • CI/CD5
    • c++5
    • gitlab5
    • gpu5
    • hpc5
    • reproducible environment5
    • version5
    • SQL4
    • automation4
    • cli4
    • control4
    • gpu programming4
    • julia4
    • lessons4
    • license4
    • packaging4
    • readable code4
    • research software4
    • Git3
    • c3
    • citation3
    • database3
    • licensing3
    • release3
    • shell3
    • carpentries2
    • checklist2
    • cloud2
    • collaboration2
    • computing2
    • container2
    • curriculum2
    • data analysis2
    • data science2
    • docker2
    • genomics2
    • jupyterlab2
    • makefile2
    • metagenomics2
    • package2
    • performance2
    • project organization2
    • reproducible environments2
    • singularity2
    • software2
    • sql2
    • unix2
    • workshops2
    • <img src=x onerror=alert(1)>1
    • DMP1
    • Django1
    • FAIR1
    • GLAM1
    • HPC1
    • IDE1
    • MATLAB1
    • Make1
    • MarcEdit1
    • Matlab1
    • PR1
    • RESTful API1
    • This material is an introduction to machin learning with Python. Topics are: Unsupervised Learning: dimensionality reductiong; unsupervised Learning: clustering; supervised Learning: basic methods; supervised Learning: using real data and preprocessing1
    • Unix1
    • academic1
    • action1
    • arduino1
    • arduino nano1
    • assessment1
    • astronomy1
    • aws1
    • backup1
    • bash1
    • benchmarking1
    • biocuration1
    • bioinformatics1
    • biological data1
    • blog1
    • business1
    • cff1
    • climate science1
    • cmake1
    • code1
    • code review1
    • codemeta1
    • collaborative environment1
    • command line1
    • common workflow language1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified24
    • Beginner1
    • Show N_FILTERS more
    • Licence
    • License Not Specified
    • Show N_FILTERS more
    • Resource type
    • course25
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: programming language

and Licence: License Not Specified

25 materials found
  • course

    Software Carpentry: Programming with R

    programming language R
  • course

    Cookiecutter software project template to kickstart a modern best-practice Python project with FAIR metadata

    fair metadata python programming language codemeta cff reuse citation
  • course

    Introduction to R

    programming language R metagenomics
  • course

    Intermediate Research Software Development (Python)

    • beginner
    programming language python intermediate software engineering testing debugging version control continuous integration packaging code releasing code …
  • course

    Alan Turing Institute - Research Software Engineering with Python

    research software engineering programming language python collaborative environment
  • 1
  • 2
  • 3
EVERSE Training
contact.training@cern.ch
Contribute
About EVERSE Training
Funding & acknowledgements
Privacy
Cookie preferences
TeSS Version: 1.5.1
EVERSE Training Version: 0.1.2
Source code
API documentation
Bioschemas testing tool

This project has received funding from the European Union’s Horizon Europe Programme under GA 101129744 — EVERSE — HORIZON-INFRA-2023-EOSC-01-02