- Home
- Materials
Filter
Sort
-
-
Filter Clear filters
-
-
Content provider
- EVERSE3
- Show N_FILTERS more
-
-
-
Keyword
- c
- programming language25
- python18
- R9
- git9
- testing9
- Python8
- version control8
- data7
- fair7
- continuous integration6
- documentation6
- github6
- reproducibility6
- CI/CD5
- c++5
- gitlab5
- gpu5
- hpc5
- reproducible environment5
- version5
- SQL4
- automation4
- cli4
- control4
- gpu programming4
- julia4
- lessons4
- license4
- packaging4
- readable code4
- research software4
- Git3
- citation3
- database3
- licensing3
- release3
- shell3
- carpentries2
- checklist2
- cloud2
- collaboration2
- computing2
- container2
- curriculum2
- data analysis2
- data science2
- docker2
- genomics2
- jupyterlab2
- makefile2
- metagenomics2
- package2
- performance2
- project organization2
- reproducible environments2
- singularity2
- software2
- sql2
- unix2
- workshops2
- DMP1
- Django1
- FAIR1
- GLAM1
- HPC1
- IDE1
- MATLAB1
- Make1
- MarcEdit1
- Matlab1
- PR1
- RESTful API1
- This material is an introduction to machin learning with Python. Topics are: Unsupervised Learning: dimensionality reductiong; unsupervised Learning: clustering; supervised Learning: basic methods; supervised Learning: using real data and preprocessing1
- Unix1
- academic1
- action1
- arduino1
- arduino nano1
- assessment1
- astronomy1
- aws1
- backup1
- bash1
- benchmarking1
- biocuration1
- bioinformatics1
- biological data1
- blog1
- business1
- cff1
- climate science1
- cmake1
- code1
- code review1
- codemeta1
- collaborative environment1
- command line1
- common workflow language1
- compile1
- Show N_FILTERS more
-
-
-
Difficulty level
- Not specified3
- Show N_FILTERS more
-
-
-
Resource type
- course
- Show N_FILTERS more
-
- Show disabled materials
- Show archived materials